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Elliptical soft colloids in smectic-C films

N. M. Silvestre,l’z’>I< P. Patr1’ci0,2’3 and M. M. Telo da Gama'?
lDepartamenlo de Fisica da Faculdade de Ciéncias, Universidade de Lisboa, Avenida Professor Gama Pinto 2,
P-1649-003 Lisboa Codex, Portugal
2Centro de Fisica Tedrica e Computacional, Universidade de Lisboa, Avenida Professor Gama Pinto 2,
P-1649-003 Lisboa Codex, Portugal
3stituto Superior de Engenharia de Lisboa, Rua Conselheiro Emidio Navarro 1, P-1949-014 Lisboa, Portugal
(Received 27 April 2006; published 17 August 2006)

We investigate theoretically the elliptical shapes of soft colloids in freely standing smectic-C films, that have
been reported recently. The colloids favor parallel alignment of the liquid crystal molecules at their surfaces
and, for sufficiently strong anchoring, will generate a pair of defects at the poles of the colloidal particles. The
elastic free energy of the liquid crystal matrix will, in turn, affect the shape of the colloids. In this study we will
focus on elliptical soft colloids and determine how their equilibrium shapes depend on the elastic constants of
the liquid crystal, the anchoring strength, the surface tension, and the size of the colloids. A shape diagram is
obtained analytically, by minimizing the Frank elastic free energy, in the limit of small eccentricities. The
analytical results are verified, and generalized to arbitrary eccentricities, by numerical minimization of an
appropriate Landau free energy. The latter is required for an adequate description of the topological defects
when the liquid crystal correlation length is comparable to the size of the colloidal particles.

DOI: 10.1103/PhysRevE.74.021706

I. INTRODUCTION

Owing to their intriguing and complex behavior, colloidal
dispersions in liquid crystals have been the subject of numer-
ous studies in recent years [1]. The behavior of these in-
verted emulsions depends upon (i) the elastic constants of the
liquid crystal, (ii) the size and shape of the colloidal par-
ticles, (iii) the surface tension, and (iv) the boundary condi-
tions at the surface of the container. These contributions lead
to highly anisotropic long-ranged colloidal interactions [2,3]
that result in a variety of self-organized colloidal structures,
such as linear chains [4-8], periodic lattices [8—10], aniso-
tropic clusters [11], and cellular structures [12] stabilized, in
general, by the presence of topological defects.

The competition of elastic and surface energies may also
determine the shape of nematic droplets [13,14]. Indeed, for
sufficiently large parallel anchoring, nematic droplets were
found to exhibit sharp ends [15]. These shapes are known as
tactoids and the tactoidal shape is more pronounced for
smaller droplets. As the size of the droplet increases, the
contribution of the isotropic surface tension also increases
and, as a result, the shape of the droplets becomes spheroidal
[16]. Recent studies on the shape of isotropic soft colloids in
a nematic liquid crystal illustrate this behavior and reveal a
way of controlling the shape of the droplets using surfactants
[17].

Freely standing smectic films (Sm FSF’s) are two-
dimensional systems obtained by spreading a smectic liquid
crystal through a hole drilled into a substrate. These films
are useful systems to study surface interactions, effects of
reduced dimensionality on liquid crystal phase transitions
[18], and interactions between soft colloids [6-8,19].
Soft colloids or inclusions are created by (i) rapid reduction
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of the film area, (ii) blowing across the film to pull material
from the meniscus region, or (iii) heating the system near the
smectic-to-isotropic or smectic-to-nematic phase transition
[20].

The thickness of Sm FSF’s ranges from a few thousand
down to two smectic layers. Recent studies on Sm-C”
FSFs at the Sm-C"-cholesteric (N*) phase transition, revealed
the existence of an intermediate thickness where N* soft
colloids are nucleated [21]. For thin films (NV<24; N is
the number of layers) the phase transition is driven by layer-
by-layer thinning, while for thick films (N>400) the N*
order is stabilized and appears through the nucleation of N*
fingers.

Experimental studies on the ordering of soft colloids in
Sm-C* FSF’s report that the molecules in the liquid crystal
matrix are aligned perpendicular to the colloidal surfaces,
nucleating one hyperbolic topological defect close to the col-
loidal surfaces [6]. By contrast, experiments on Sm-C FSF’s
report that the liquid crystal molecules are aligned parallel to
the colloidal surfaces [7,8,10]. Under these conditions, a pair
of defects may be nucleated at the poles of the colloidal
particles [22] which, in turn, affect the colloidal shape as
reported by Cluzeau et al. [7]. Large colloids (>15 um) are
found to be almost circular, while smaller ones (<15 wm)
are elliptical, with the long axis oriented along the Sm-C
director c.

Here we carry out a theoretical investigation of the shape
of soft colloids. We restrict our study to the elliptical shapes
observed in the experiment referred to above [7] and will not
consider tactoids. This paper is organized as follows. In Sec.
IT we describe the Frank free energy for Sm-C FSF’s. In Sec.
III, we calculate analytically the configuration of the
c-director for elliptical soft colloids, in the limit of small
eccentricities. These results provide a complete (albeit ap-
proximate) description of the dependence of the equilibrium
shape (optimal eccentricity) on material parameters, that will
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be used to guide the subsequent numerical study. In Sec. IV
we use a Landau free energy to investigate numerically
the same problem and compare the results obtained using
both approaches. Finally, in Sec. V we summarize our
conclusions.

II. FREE ENERGY

The free energy of a Sm FSF takes into account the de-
formations of the in-layer molecular alignment [23], or ori-
entational order, represented by a two dimensional vector
field ¢=(cos 6,sin ). It is given by

1
F= 5 dS[K,(V-¢)*+ K,(V X ¢)?]
Q

w
+f dl(y+—sin2(0f—.9)>, (1)
o0 2

where C; and K, are the splay and bend elastic constants,
and y and W are the isotropic and anisotropic line
tensions, respectively. & is the preferred orientation at the
boundary Q). In general, K, and K, are different but, for
simplicity, we will use the one-elastic constant approxima-
tion, KC,=/C, =K. The bulk elastic free energy density is then
given by K(V6)?/2.
Minimization of Eq. (1) with respect to 6(x,y) yields

V20=0 inQ, (2)

w
V-VG—%sinZ(Og—G):O in 90, (3)

where w is the unit vector normal to the boundary J€).

III. ELLIPTIC DEFORMATIONS

Let us consider an isotropic soft colloid in a smectic
layer (Fig. 1). The shape of the colloid is not fixed but
depends, in particular, on the line tension. If the isotropic line
tension is large, the colloid is circular, or slightly distorted.
For simplicity, we start by considering elliptical deforma-
tions with small eccentricities. If nematic or cholesteric
droplets, or smectic islands, are considered, one also needs
to take into account the dependence of the shape on the
molecular orientational order inside the soft colloid.

The problem of finding the equilibrium shape, or the
optimal eccentricity, is simplified by using elliptic
coordinates

{x =R, coshu cos ¢, @

y="TR, sinh u sin ¢,

where R,=e¢R(1—-e?)""4, the eccentricity of the colloid is
e=1/coshu’, and u* is the minimal value of u, at the bound-
ary of the colloid. R= JA/r, where A is the area of the soft
colloid.

In what follows we assume that the colloidal boundary
favors a parallel orientation of the in-plane liquid crystal
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FIG. 1. (Color online) Soft colloids in a smectic-C layer with
correlation length §=0.1R and w=WWR/K=10. The vectors repre-
sent the ¢ director, while the colored regions correspond to strong
variations of the order parameter and signal the surface defects. (a)
o=yR/K=40 and optimal eccentricity e"=0.2; (b) o=13.4 and
e"=0.4; (c) 0=7.8 and ¢"=0.6; (d) 0=5.8 and ¢"=0.8.

director. This will depend on the eccentricity of the colloid
and is given by

— sin2

¢ = — arctan \'1—e2—¢ . (5)
1—-cos2¢

The solution of the Laplace equation (2) is

straightforward and has the general form

©

O(u, ) = 2 exp{— mu}(U,, sinm¢p+V,, cosme), (6)

m=0

for uniform liquid crystal alignment at infinity. Note
that 6(u,¢) satisfies the following symmetries: (i)
Ou,—p)=—60(u,p) and (ii) O(u,7—Pp)=—60(u,p), implying
that 1,,=0 and restricting the nonzero coefficients to those
with even indices, respectively. Redefining the coefficients
Uy — U pexp{2mu’}, we write

)

O(u, ) = >, Us,expi—2m(u — u)}sin 2mp. (7)
m=1

The analytical solution for elliptical soft colloids, for
e< 1, is obtained using perturbation theory. We expand the
coefficients U2m=L{(2(Zr)l+eZU(22 +e4Z/{(22+- -+, of the solution
0= 0y+e*0,+e*6,+- -, and generalize the method used for
circular colloids in Ref. [24]. Assuming that L{gﬁ:—pgl/m,

for circular soft colloids, 6, is given by
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po exp{—2(u—u’)}sin 2¢
1 - poexp{-2(u—u*)}cos 2¢ |’

6y = — arctan

(8)

where p, is obtained by minimizing the free energy Eq. (1).
This yields a second order algebraic equation

P+ (@w)py—1=0, 9)

with a positive root py=(2/w)[y1+(w/2)*~1], where
w=WR/K is a dimensionless ratio of the anchoring and
elastic strengths.

Suppose we can write the free energy density as
LO1=fo[ O]+ e*f[ O] +e*f4[ 6]+ - - A functional Taylor expan-
sion of the free energy about the solution for a circular
colloid 6, yields

A= [ o+ eria)serio + [ exaom

% 5f0 2 5f2
+e
60(x) % 00(x) o
1 5
+ —fdzx’szxAH(x) % AG(x")
2 00(x)50(x") 8
+-e (10)
where Af=60-0,=e*6,+e*6,+ -, and the expansion is

valid to the fourth order in the eccentricity. This is simplified
using the equilibrium condition for the circular case,
Sfy! 56| 4,=0, which implies that 6, and 6, are not present in
the terms of order e? and e*, respectively, yielding for the
free energy

FL60]= Fol 6p] + @ F[ 6]+ e* Fil 69,601 + . (11)

The transition from circular to elliptical shape is con-
trolled by the sign of F,, which depends only on 6. If this
term is positive, the soft colloid is circular; otherwise it is
elliptical. To determine the optimal eccentricity, we begin by
minimizing the free energy [Eq. (11)] with respect to 6,. The
solution satisfies the linear equation 6.F,/56,=0, and may be

written as
5*fo o
| per| %S0
flx)= f d"[ 56(x) 56(x) (,J 56(x")

6
(12)

The general solution 6 is a linear combination of the solu-
tions of the Laplace equation, in terms of which the linear
equation becomes a matrix equation for the set of coeffi-
cients L{gzw)l, and Eq. (12) is an (infinite) matrix inversion. The
optimal eccentricity is then e*=-F,[ 6,]/2F4[ 6y, 65].

In order to determine F;, F, and F, in Eq. (11), we pro-
ceed by noting that the bulk elastic free energy may be inte-
grated by parts, yielding
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1% 36
FdK===] d¢o —

2 0 &M %)
2
6, 00
:—8o[po]—e4f dp— —| . (13)
0 2 du |z

where —KCE[po]l=—mK In(1-pj) is the elastic free energy of
a circular soft colloid. Terms of order ¢? and e*, that depend
on 6, and 6,, respectively, were neglected since they do not
contribute to the total free energy.

The term corresponding to the isotropic line tension
v is independent of 6. Its expansion in the eccentricity
yields

34
FJK=vIK dl = 2o 1+ae , (14)

)
where we used dl/d¢p=R,1-e’cos’ple. o=yRIK
is the ratio of the isotropic line tension and the elastic
strength.

The expansion of the contribution of the anisotropic line
tension or anchoring strength )V is obtained by expanding
the preferred orientation [Eq. (5)], &'=6)+e*6)+---. After
some tedious algebraic and trigonometric manipulations, we
obtain

WIK
Fwlk=——

disin®(¢* — ) = 9(«90[190] +e*Sy[po]
a0 2

2
+ e“{ Salpol + f d¢6,(0,—265)cos 2(6; — 6,)

0

2
+f dd)% cos2¢sin2(%—00)}), (15)

0

where KwSy[pyl/2=mKw(1-py)/2 is the anchoring energy
for a circular soft colloid, S[po]=-3m(1-p3)/8 and
Silpol=m(=18+5py+24p3—3p7)/128.

By adding Egs. (13)-(15) we obtain the free energy,
FLO1=Filpol+e* Falpol+e* Filpo. 6], where

fo[po]/lc =- SO[pO] +2mo + (,()So[po]/z, (16)

fz[Po]/IC = wSz[Po]/2 (17)

and

w 3 1> 36,
Fulpo, )K= 554[170] + 5770'— A Ao, —

2 0 du %)

® 2w
+ E d¢02(02 - ZHE)COS 2(68 - 00)
0

@ 2
+ S dpbrcos 2¢sin2(6y— 6,).  (18)
0

Inspection of F>,[p,] reveals that the shape transition is con-
trolled by the dimensionless quantity w. It is clear, from the
definition of p, that F, is negative for any finite value of w
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FIG. 2. Zl(zz) and L{f) as functions of the reduced anchoring
strength w=WR/I. Higher order coefficients lead to small correc-
tions (less than 0.6%) to the optimal eccentricity e”.

and thus the equilibrium shape is elliptical, except when w
vanishes (weak anchoring).

In order to calculate 6#,, we approximate the general solu-
tion by a finite number of terms in Eq. (7), corresponding to
a small number of coefficients Z/{(;nz Explicit calculations re-
veal that the first two coefficients, L{(22) and Z/Iff), are sufficient
to yield 6, and the eccentricity e” with an accuracy better
than 1% and 0.6%, respectively.

Figure 2 illustrates the dependence of Z/{(ZZ) and Uiz) on the
reduced anchoring strength w. For weak anchoring, as w
vanishes, we find

13
UD =~ 2
2 = 256"
3 (wk1) (19)
Ur-_ 2
64
while for strong anchoring,
1 1 1
w2>=-(1_-)_—
2T w 20°
1 5\2 (w>>1). (20)
e
4 2w )

In Fig. 3 we plot the optimal eccentricity e” as a function
of o, at fixed values of w=0.1, 1.0, 10, %. As expected, the
stability of the elliptical shape decreases as o increases. We
note, however, that the rate at which the eccentricity e" de-
creases as o increases depends on w. In fact, as w increases
a larger isotropic tension o is required to reduce the eccen-
tricity. In the limit of strong anchoring, the liquid crystal
molecules are parallel to the surface of the soft colloid, but at
the same time, are parallel to each other, to minimize the
elastic free energy. These conditions imply a strong eccen-
tricity, or a pronounced elliptical shape, of the soft colloid.
The isotropic line tension, on the other hand, favors circular
soft colloids, minimizing the perimeter and reducing the
eccentricity.

For weak anchoring, the optimal eccentricity has the
asymptotic behavior
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FIG. 3. Optimal eccentricity e* as a function of o=yR/K, at
fixed values of w=WR/K=0.1, 1.0, 10, .

& = (w/O_)1/2+ 3/8(6!)/0’)3/2 (0w ]). (21)

This expansion clearly reveals a bifurcation at w=0. At zero
anchoring, the liquid crystal is not aligned by the colloidal
boundary, and the shape of the soft colloid is circular. For
positive values of w, the soft colloid becomes elliptical. For
strong anchoring, the optimal eccentricity e” has the
asymptotic behavior

. 2 V3(19+ 120) 1
e = - —
Vo-11/3 2@Bo-11D)"w

(w>1). (22)

When w— the colloidal shape is strongly affected by the
elastic deformation of the liquid crystal matrix and the ec-
centricity is determined by the competition between the iso-
tropic line tension and the elastic free energy. When o is
large, the eccentricity is small, and the soft colloid is almost
circular. As o decreases, the soft colloid becomes more el-
liptical and, eventually, this perturbation theory breaks down.
We note, however, that the absence of solutions of Eq. (22)
for 0<11/3 may indicate the stability of other colloidal
shapes, such as the tactoid, an elongated shape with two
singularities or cusps at its extremities.

Figure 4 illustrates the shape “diagram” of the soft colloid
depicting lines of constant eccentricity in the w-o plane.
These curves exhibit two regimes. For w<<1, the slope of the
constant eccentricity lines indicates that o is proportional to
w. For larger values of w, however, the lines are nearly flat,
indicating a dependence on o only. The lower line on the
diagram corresponds to a “critical” value of o, where the
eccentricity of the colloid is e"=1 and the elliptical shape
becomes unstable.

The shape diagram reveals that colloids with approxi-
mately circular shapes (e—0) occur when ¢ is two to three
orders of magnitude larger than w, in the weak anchoring
regime. In the strong anchoring regime, nearly circular col-
loids occur at large values of o with a dependence on w that
is less marked. This means that the shape of the colloids
depends not only on the ratio of the isotropic-to-anisotropic
line tensions o/w, but also on the director configuration, as
expected.
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FIG. 4. Shape diagram: lines of constant eccentricity in the w-o
plane. The circle and the ellipse schematically shown occur for
e=0 and ¢=0.9, respectively.

IV. NUMERICAL SOLUTIONS

The Frank elastic free energy used in the previous section
[Eq. (1)] describes the general features of soft colloids
in liquid crystals. However, it does not describe adequately
the topological defects that may occur in the strong anchor-
ing regime. The structure of these defects is relevant for
colloids with sizes comparable to the liquid crystal correla-
tion length. Furthermore, the analytical solutions described
above are based on a perturbation theory that is valid for
small eccentricities only.

For completeness, we consider a Landau-like free energy,
where the orientational order parameter of the Sm-C phase,
W=|lexp(if), includes both the tilt angle |¢| and the azi-
muthal orientation 6. The Landau free energy may be under-
stood as a Taylor expansion in terms of the invariants of ¢
and of its deformations or spatial derivatives d;¢. For an
isotropic Sm-C film (with no preferred orientation within
the layers), there is a single quadratic and a single quartic
invariant of . In what concerns the derivatives of ¢, how-
ever, several quadratic invariants exist but they are reduced
to a single term proportional to V> =|d,4/>+|d,4{% in the
one-elastic constant approximation. '

We use this notation to rewrite the surface free energy, Eq.
(1), denoting by ¢* the preferred order parameter at the
boundary of the colloid. The surface free energy written in
terms of an order parameter such as ¢ has to account for (i)
the coupling between the orientation of the smectic mol-
ecules and the surface and (ii) the coupling between the tilt
angle || and the one imposed by the surface ||, resulting in
a form that is slightly different form that of Eq. (1). The total
free energy is

A B L
— 2 L 4 L 2
F= st{ Sl +2|w|}

w vy 2)}
+faﬂdl{y+ 5 <I—Re{|¢s|2} , (23)

where Ref{} denotes the real part and ¢ is the complex
conjugate of . Using ¢,,.=\.A/B, for the order parameter
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FIG. 5. Reduced free energy F as a function of the eccentricity
for e=107*, w=10, and o=6.

of the uniform Sm-C, and making the transformations
p=l (\f'§|¢bmk ), X=x/R, we obtain the reduced free

energy F=F/ (AR | ),

7o j dST1FRTP - 1)+ eV ]
Q
P

2
+f df|:a+2<1—Re - >s, (24)
a0 2 g

where &=(&/R)* and &=\LIA=\K/Al|Yyyl is the
correlation length of the Sm-C, the typical length of a defect.
The Frank free energy [Eq. (1)], is recovered when & —0.
For simplicity, we have considered |¢/*| =|,ul-

The size of the colloids may be 10-100 times the size of
the defects, i.e., e < 1. The major difficulty in the numerical
solution stems exactly from these different length scales. We
use finite elements with adaptive meshing, as described in
Ref. [19], to minimize Eq. (24). A first triangulation respect-
ing the predefined boundaries is constructed. The order pa-
rameter ¢ is given at the vertices of the mesh and linearly
interpolated within each triangle. The free energy is then
minimized using standard methods. The variation of the so-
lution at each iteration is used to generate a new mesh. In
typical calculations convergence is obtained after two mesh
adaptations, corresponding to final meshes with 10* points,
spanning a region of 30R X 30k, and minimal mesh sizes of
1073R, close to the defects. The free energy is obtained with
a relative accuracy of 1073%.

The optimal eccentricity is obtained as follows. We start
by fixing the set of material parameters {e, w, o}. For a given
value of the eccentricity e the free energy of Eq. (24) is
minimized. The eccentricity is incremented by de and the
minimization is repeated. The free energy profile, as a func-
tion of e, exhibits a well defined minimum (in most cases),
allowing the calculation of the optimal eccentricity e"(Fig.
5). For the smallest eccentricities e”, however, the variation

of the free energy near the minimum F(e") is of the order of
the relative numerical accuracy. This renders the method less
accurate in the limit of circular colloids (see Fig. 7). After
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FIG. 6. Optimal eccentricities as a function of & for (a) =1 and
(b) =10 and o=10.

determining ¢, the parameter o is incremented and the free
energy profile is calculated.

In the previous section we calculated the optimal eccen-
tricity e” analytically. Since the results are based on pertur-
bation theory, the numerical results are not expected to match
the analytical ones in the limit £ — 0, for any value of .
Figure 6 illustrates how the optimal eccentricity depends on
e for (a) w=1 and (b) w=10 and o=10. Both curves ap-
proach a constant value of e*, as e—0 and the numerical
results approach the analytical values, when € — 0, for small
eccentricities.

In Fig. 7 we plot the numerical results together with the
analytical curves for the optimal eccentricity as a function of
o, at constant w=1, 10, 100 and £=1072, 10~*. The numeri-
cal results confirm that the optimal eccentricity is a strictly
decreasing function of the line tension o. Moreover, the de-
crease in the slope of ¢” vs o is more pronounced in the
presence of surface defects (w>10). This slope does not
change significantly with & (at constant w).

The numerical results for w=100 cross the corresponding
analytical curve, which in view of the results for lower w,
may seem surprising. This crossover was observed for an-
choring strengths, in the range 10<w <100, and is due to

1 T T A R )

o \\ v w=lo | |
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v 99 O a=l00,e=10" ¢ 1
]
041
021
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FIG. 7. Optimal eccentricity ¢* as a function of ¢ at constant
w=1, 10, 100 and £=1072, 107, Lines and symbols represent the
analytical and numerical results, respectively.
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FIG. 8. Shape diagram. Lines and symbols denote equilibrium
shapes at constant eccentricity, in the w-o plane. The lines were
obtained analytically while the symbols are the result of a numerical
minimization, for systems with =102,

the fact that the critical value o,, where the elliptical shape
becomes unstable (¢“— 1), does not behave as predicted by
the analytical theory. In fact, while the analytical approach
predicts that o./w varies considerably, the numerical results
suggest a nearly constant value, o./w=0.505+£0.005. It is
likely, however, that this limit will not be observed in experi-
ments since for most materials o/ w>1 [25].

In Fig. 8 we plot the numerical and the analytical
shape diagrams for several values of the eccentricity
(e=0.1,0.2,0.3,0.4,0.5). The numerical shape diagram was
obtained for £=1072. Results for £=10"* yield similar
curves, that are shifted by a small positive value of o. The
results of the numerical calculations reveal the existence of
two distinct regimes. For weak anchoring, w<<10, circular
colloids may occur if o is two to three orders of magnitude
larger than w, in line with the analytical results. For strong
anchoring, w>10, the presence of the defects leads to a
behavior that differs from the analytical predictions. In fact,
the latter suggests that o is nearly independent of w, while
the numerical results indicate that o increases as w increases.
In the limit e=1, the results of the numerical calculations
suggest a linear behavior, 0.~ 0.505w.

V. CONCLUSIONS

We have studied the shape of soft colloids in Sm-C FSF’s.
We assume that the colloids may adopt one of two shapes: (i)
elliptical with eccentricity e and (ii) circular (¢e=0) and using
the Frank elastic free energy obtained an approximate solu-
tion of the c-director field valid for small eccentricities. This
provides insight on how the eccentricity depends on the ma-
terial parameters, such as the dimensionless quantities w and
o. The analysis also shows that soft colloids adopt noncircu-
lar shapes for any finite anchoring strength w. We have found
a critical value of o, where the eccentricity is e"=1, indicat-
ing that the elliptical shape is no longer stable.

The analytical results reveal that the size of the colloid R
plays a very important role. For weak anchoring conditions,
WR <K, colloids with approximately circular shapes may
occur if 7y is two to three orders of magnitude larger than W.
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For strong anchoring, circular shapes occur when R > K/ y.
In all cases, elliptical shapes are favored for sufficiently
small colloids.

Finally, we compared the analytical results with the re-
sults of a numerical minimization of a Landau-like free en-
ergy. We have proposed an expression for the surface free
energy that takes into account the coupling between the ori-
entational order parameter of the Sm-C phase and the order
favored at the boundary of the colloid. The numerical results
validate and extend the results of the analytical calculations.
The main difference concerns the curves of constant eccen-
tricity depicted in the shape diagram of Fig. 8, in the strong
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anchoring regime. While the analytical approach predicts
curves that are almost constant for large w, the numerical
results indicate that o continues to increase as w increases
and in the limit e=1, o, is found to vary linearly with w.
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